Chemistry Entrance Material for Grade 10 to 11 Key Answer

2018-2019

Chapter 1: Laboratory Skills and Techniques

In all multiple choice questions, more than answer could be correct

Section №: 1 Safety Rules Concept №:

1. Know the laboratory safety rules

01. Which of the following statement(s) about the laboratory safety rules is *TRUE* or *FALSE*?

- a- Listen carefully to instructions:
- b- Wear safety glasses sometimes:
- c- Try your own experiment without permission:
- d- Do not smell a gas except with a great care:

2. Know the warning labels on containers of chemicals

02. Label the following warnings and hazard labels.

_____T____

____F_____

Т

_____F_____

Section №: 2 Chemical Apparatus Concept №:

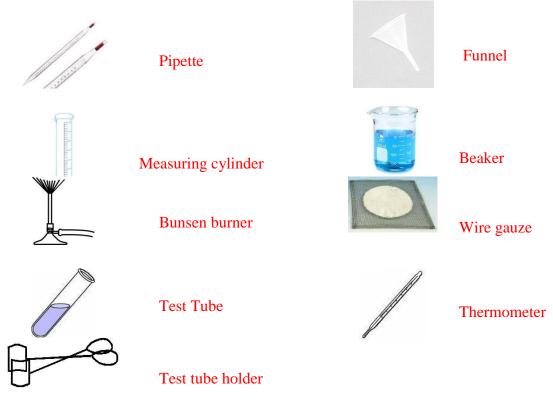
1. <u>Recognize the uses of some chemical apparatus</u>

03. Match each chemical apparatus with its corresponding use:

- 1. Pipette B
- 2. Measuring cylinder H
- 3. Thermometer E
- 4. Test tube D
- 5. Funnel A
- 6. Wire gauze G

- **a.** used in filtration
- **b.** to measure specific or accurate amounts of liquid
- **c.** Separate two immiscible liquids like oil and water
- d. used for small scale experiments
- e. to measure temperature
- **f.** to measure approximate volumes of liquid or to act as a liquid container

7.Beaker F8.Separating funnel C


- **g.** distribution of heat
- **h.** to measure inaccurate different volumes of liquid

04. The most suitable apparatus to dissolve salt in water is:

- [-A-] Cylinder
- [-B-] Beaker
- [-C-] Pipette
- [-D-] Burette

2. <u>Recognize the shape of some chemical apparatus</u>

05. Give the name of the following chemical apparatus:

3. Know what crystallization is

06. crystallization is the process of forming crystals. What is the missing word?

4. Know three ways to obtain crystals*

- **07**. Complete the following sentence. Crystals can be obtained from a _____ (pure solid/ pure liquid/ pure gas) by cooling it.
- **08**. Crystals can be obtained from a _____ (pure liquid/ pure solid/ pure gas/ salt solution/ sugar solution) by evaporation or heating.

12. List three ways to obtain crystals: cooling pure liquid, heating solution, evporation

5. How to obtain crystals from aqueous solutions*

09. What are the necessary steps needed to obtain salt crystals from an aqueous solution using a dish?

- 1. Use tongs to carry the hot dish.
- 2. Place the dish over a steam bath.
- 3. The water in the beaker is stirred continuously.
- 4. Heat the dish directly with the Bunsen burner until most of the water has evaporated.
- 5. A beaker half filled with water is heated to boiling to prepare a steam bath.

6. How to obtain good, larger crystals from smaller crystals of salt*

10. In order to obtain, larger crystals from smaller crystals of sugar, filter the solution by pouring it through

[-A-] a layer of soil

[-C-] two layers of kitchen paper

[-E-] a layer of grass

[-B-] a layer of saw dust [-D-] a layer of graph paper

11. To obtain good, larger crystals from smaller crystals of sugar, filter the solution and place it in a clean glass covered with a(n) _____.

- 1 light sheet of paper
- 2 cup made of metal
- 3 tightly closed bottle
- 4 heavy sheet of metal

7. Know what filtration is

12. Complete the following sentence. filtration is a process of separating a liquid from an insoluble solid.

8. Items required to perform filtration

13. Which of the following equipment is (are) needed to filter a solution?

[-A-] Filter paper

[-B-] Filter funnel [-

C-] Tongs

- [-D-] Beaker or conical flask to collect the filtrate
- [-E-] Filter stand
- [-F-] Test tube to collect the residue

Chapter 2: Revision of the Scientific Method

In all multiple choice questions, more than answer could be correct

Section №: 1 Experiments and Generalizations

Concept №:

1. Know what an experiment is

01. An experiment is defined as:

[-A-] controlled sequence of events

[-B-] a rule framed on a collection of individual facts.

2. Know what a generalization is*

02. What is a generalization?

[-A-] controlled sequence of events

[-B-] a rule framed on a collection of individual facts.

3. Know when a generalization is proved to be true*

03. When is a generalization proved to be true?

when it is consistent with known facts

Section No: 2 Change of State

Concept №:

1. Reading a heating curve of a pure compound

04. What is the instrument used in measuring the temperature to plot heating curves?

Thermometer

05. How many stages are there in the graph if the temperature vs. Time is plotted when a pure solid is heated to a temperature above its melting point?

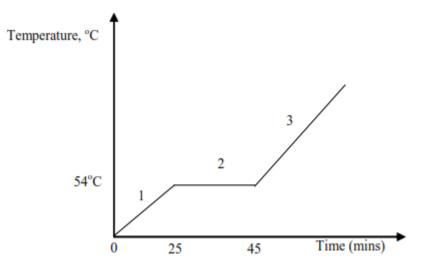
[-A-] one

[-B-] two

[-C-] three

[-D-] four

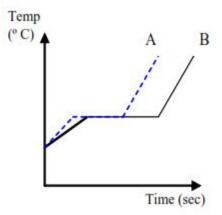
06. Which one of the following is *TRUE* when a solid is heated?


[-A-] A plot of temperature versus distance can be drawn.

[-B-] A plot of temperature versus time can be drawn.

[-C-] Energy is added at an increasing rate.

[-D-] Energy is added at a constant rate.


07. The following is the warming behaviour for 2.00 g of pure solid substance Y

a) What is the melting point of substance Y? <u>54C</u> b) When does the compound start melting? <u>25 min</u> c) When does the compound finish melting? <u>45 min</u> d) How long does the melting process take? <u>20 min</u> e) In which state(s) does pure substance Y exist in? i- Region 1: <u>solid</u> ii- Region 2: <u>solid + liquid</u> iii- Region 3: <u>liquid</u>

2. Comparing heating curves of 2 samples of the same solid with different masses

08. If two samples of the same solid with different masses were heated:

[-A-] Which substance is lighter and which one is heavier?

A is lighter, B is heavier

9. Which one of the following is *TRUE* when a liquid is cooled?

[-A-] A plot of temperature versus distance can be drawn.

[-B-] A plot of temperature versus time can be drawn.

[-C-] Energy is released at an increasing rate.

[-D-] Energy is released at a constant rate.

4. Comparing cooling curves of 2 samples of the same solid with different masses

10. Two samples of the same liquid with different masses were cooled below their melting point. Which of the following is *TRUE*?

1. The heavier sample will have the same freezing point as the lighter sample.

2. The heavier sample will take more time to freeze.

3. The heavier sample will have a higher freezing point.

4. The heavier sample will take less time to freeze.

Section \mathbb{N}_{2} : 3 A Generalization About the Melting of Solids

Concept №:

1. Melting and freezing point of a solid

11. What is the temperature at which a pure substance melts called? What other name can be given to it?

melting and freezing point

12. On what factor(s) does the melting and freezing points of a pure substance depend?

Nature of substance

13. The melting point is freezing point._____ (greater than/ smaller than/ the same as) the freezing point.

2. Know examples of physical constants

14. Which of the following is not a physical constant of a pure solid?
[-A-] melting point of this solid
[-B-] its freezing point
[-C-] its density
[-D-] its mass

3. <u>Difference between a phase and a state</u>

15. Explain, giving examples, the difference between 'state' and 'phase'. Is it possible to have two phases in the same state?

S, L, G : state of matter , phase uniform medium,

Yes

4. Number of states and phases in a certain system

26. How many 'states' and 'phases' is (are) there in the following mixtures:

[-A-] sugar and water: 2 state , 1 phase

[-B-] salt and sand: <u>1 state</u>, <u>2 phase</u>

[-C-] water and oil: <u>1 state</u>, 2 phase_____

Section №: 5 Avogadro's Number and the Mole Concept

Concept *N*₂:

1. What a mole is

01. What is a mole?

Avogadros number of particles = 6×10^{23}

2. Defining the amu

02. The atomic mass unit

, amu, is exactly 1/12 of the mass of a carbon atom.

3. The relation between a gram and the amu

03. The relation between gram and amu is represented by

 $1 g = 6 x 10^{23} amu \qquad (Use N_A = 6 x 10^{23})$

8. Given atomic mass. find mass of 1 mole in g

04. The atomic mass of Rubidium is 85, so the mass of one mole of Rubidium is 85 g _____

- 05. The atomic mass of silver (Ag) is 108. Find the mass of two moles of silver atoms. 216 g
- 06. The atomic mass of helium is 4. The mass of :
 - one mole of helium is 4 amu. 1
 - 2 one mole of helium is 4 g.
 - 3 one atom of helium is 4 g.
 - 4 one atom of helium is 4 kg.

9. Given atomic mass, find mass of 1 atom in amu

- 07. The atomic mass of potassium (K) is 39. The mass of:
 - one mole of potassium is 39 amu. 1
 - 2 one mole of potassium is 39 kg.
 - 3 one atom of potassium is 39 amu.
 - 4 one atom of potassium is 39 kg.

08. The atomic mass of lithium (Li) is 7. The mass of one atom of lithium is 7 amu

12. Find the molecular mass of a compound

09. Given the following atomic masses: N = 14; O = 16. What is the molecular mass of N_2O_5 ? 108 g/ mol

13. Find the mass of 1 mole of a compound

10. (Given: atomic masses of H = 1; O = 16; and S = 32). The mass of one mole of sulphuric

acid, H_2SO_4 , is ______

14. Find the molar mass of a compound

11. Given the following atomic masses: N = 14; O = 16. What is the molar mass of N_2O_3 ? 62g/mol

15. Given ato mic mass and mass, f in d N_2 of moles n = m/M.

12. How many moles are there in 3.9g of K? [Atomic mass of K = 39]

0.1 mol

13. Find the number of moles in 51g of ammonia gas (NH_3) . [N=14; H=1]

3 mole

14. How many moles are present in 6.3 g of nitric acid HNO_3 ? [Given atomic mass of H = 1, N = 14 and O = 16]

0.1 mole

15. How many moles are contained in 620 g of pure H_2CO_3 ? [Given atomic masses: H = 1, C = 12 and O = 16]

10 mole

16. Which has more number of moles: 22 g of carbon dioxide gas (CO_2) or 12 g of carbon (C)? [Given atomic masses: C = 12 and O = 16]

C

16. Given atomic mass and mole, find the mass n = m/M.

17. Given 32 g of oxygen gas, O_2 . How many moles of O_2 are there in this quantity? [Given atomic mass of O = 16]

1 mole

18. The atomic mass of iron (Fe) is 56. What is the mass of 3.5 moles of iron?

196 g

19. What is the mass of 3 moles of acetic acid, CH₃COOH? [Given that atomic mass of H=1; C = 12 and O = 16].

180 g

20. Which has a larger mass in grams: 4 moles of carbon dioxide gas (CO₂) or 2 moles of carbon (C)? [Given atomic masses: C = 12 and O = 16]

 CO_2

17. <u>Given mole, find No of atoms $n(atoms) = atomicity x n(moles) x N_A</u></u>$

21. How many atoms are present in 3.5 moles of carbon dioxide gas (CO₂)? [Given atomic masses: C=12 and O=16]. Use Avogadro's number N_A= 6 x 10²³

 6.3×10^{24} atoms

How many atoms are found in 0.5 moles of Fe? Use Avogadro's number $N_A = 6 \times 10^{23}$. 22.

 3×10^{23} atoms

18. Given ato mic mass and mass, f in d N_2 of atoms n = m/M $\underline{n(atoms)} = atomicity \ x \ n(moles) \ x \ N_A$

23. What is the number of atoms found in 93 g of phosphorus (P)? [Given that atomic mass of phosphorus P = 31]. Use Avogadro's number $N_A = 6 \times 10^{23}$

 18×10^{23} atoms

24. Which has more number of atoms: 3.2 g of oxygen gas (O_2) or 2.4 g of carbon (C)? [Given atomic masses: C = 12 and O = 16]. Use Avogadro's number $N_A = 6 \times 10^{23}$

Equal

Chapter 4: Chemical Reactions

In all multiple choice questions, more than answer could be correct

Section No: 1 Physical and Chemical

Change

Concept №:

1. Distinguishing between chemical and physical changes

01. Which of the following can be found in a chemical change?

[-A-] No new substances are

produced.

[-B-] It is not easily reversible.

[-C-] It is easily reversible.

[-D-] Small amount of heat is involved in the

reaction.

[-E-] New substances are produced.

[-F-] Large amount of heat is involved in the reaction.

2. Know that in chemical changes new substances are formed

02. In chemical reactions, _____ (new / no new) substances are formed.

3. Recognizing physical and chemical changes

03. Which of the following is a physical change, and which one is a chemical change?

[-A-] Heating wax until it melts P

[-B-] Crushing some salt crystals into a powder P

[-C-] Decomposing water into its elements: hydrogen and oxygen C

[-D-] Changing water to steam P

[-E-] The burning of magnesium in air C

- [-F-] The burning of wood in air C
- [-G-] Rusting of iron in moist air C

Section №: 2 Principles of Chemical Reactions

Concept №:

1. Recognize a combustion reaction

04. Which of the following is a combustion reaction?

[-A-] A magnesium ribbon heated in air.

[-B-] The reaction between fuel and oxygen after ignition

[-C-] The reaction between iron and moist air that gives rust.

[-D-] A piece of sodium metal ignites explosively when heated in pure chlorine.

2. <u>Recognize an exothermic process</u>

- 05. In an exothermic reaction, energy is ______ (released/ consumed/ produced/ used).
- 06. Which of the following is *NOT* an endothermic reaction?
- [-A-] Electrolysis of water.
- [-B-] Heating water from 30° C to boiling continuously at 100° C.
- [-C-] Any reaction or process that uses heat energy.
- [-D-] The burning of magnesium ribbon in air.
- [-E-] Heating water from 10oC to 70oC.
- [-F-] Heating water from 10oC until it boils.
- [-G-] A reaction or process that release (produce) heat energy.
- [-H-] Burning of wood in air.

3. <u>Recognize an endothermic process</u>

- **07**. In an endothermic reaction, energy is ______ (released/ consumed/ produced/ used).
- **08.** Which of the following is an endothermic reaction?
- [-A-] Electrolysis of water.
- [-B-] Heating water from 30°C to boiling continuously at 100°C.
- [-C-] Any reaction or process that uses heat energy.
- [-D-] The burning of magnesium ribbon in air.
- [-E-] Heating water from 10°C to 70°C.
- [-F-] Heating water from 10°C until it boils.
- [-G-] A reaction or process that release (produce) heat energy.
- [-H-] Burning of wood in air.

4. Conservation of atoms and mass in chemical

09. In a chemical reaction, the number of atoms and mass are ______ (conserved/ not conserved).

10. Consider the following reaction: $2NO + O_2 \rightarrow 2NO_2$. - Are the atoms of oxygen and nitrogen conserved?

- Are the atoms of oxygen and

yes

- Is the total number of atoms conserved?

yes

- Are molecules conserved?

yes

- Check if the molecules are conserved.

yes

5. Application of conservation of atoms and mass in chemical reactions

11. If 4.0 g of a substance A reacts with 19.0 g of a substance B to produce 6.0 g of a substance C and some substance D, What mass of D do you expect to have?

17

Section №: 3 Representing a Chemical Reaction by a Chemical Equation Concept №:

1. Read a given chemical equation

12. How do you read the following equations in terms of molecules?

a) $C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$

One molecule of C_2H_4+3 molecules of O_2 produce 2 molecules of $CO_2\;$ and 2 molecules of H_2O

b) $N_2 + 3H_2 \rightarrow 2NH_3$

One molecule of N_2 + 3 molecules of H_2 produce 2 molecules of NH_3

c) $S_8 + 8O_2 \rightarrow 8SO_2$

One molecule of $S_8 + 8$ molecules of O_2 produce 8 molecules of SO_2

2. Kn ow the terms 'sub scrip t' & ' coef f icien t' in, say, 4 CO₂

13. Complete the following sentence. In the following symbol: $3 H_2SO_4$,

- [-A-] 3 is a coefficient
- [-B-] 2 is a coefficient [-C-] 4 is a subscript
- [-D-] 2 is a subscript

14. Complete the following sentence. In the following symbol: 4 NH₃

[-A-] 4 is a coefficient

[-B-] 3 is a coefficient

[-C-] 4 is a subscript

[-D-] 3 is a subscript

3. <u>Recognize a balanced equation</u>

15. Which of the following reactions is/are balanced?

1. $3NO_2 + H_2O \rightarrow 2HNO_3 + NO$

- **2.** $N_2H_4 + O_2 \rightarrow 2H_2O + N_2$
- **3.** $3\text{Fe} + 2\text{Cl}_2 \rightarrow 3\text{FeCl}_3$
- **4.** Mg + O₂ \rightarrow MgO
- 5. $NH_3 + O_2 \rightarrow N_2 + H_2O$
- **6.** $CH_4 + O_2 \rightarrow CO_2 + 2H_2O$

7. $CaCO_3 \rightarrow CaO + CO_2$

. Balance the following reaction:

1. C_4H_{10} +	$O_2 \rightarrow$	CO ₂	+	H ₂ O
2. C ₂ H ₅ OH +	$O_2 \rightarrow$	CO ₂	+	H ₂ O
3. $(NH_4)_2 Cr_2O_7$	\rightarrow Cr ₂ O ₃	+	N_2	+ H ₂ O
4. Au_2S_3 +	$H_2 \rightarrow$	H_2S	+	Au
5. C ₂₅ H ₅₂ +	$O_2 \rightarrow$	CO_2	+	H ₂ O
6. $Pb(NO_3)_2$ +	H ₃ AsO ₄	\rightarrow	PbHA	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
7. $C_{12}H_{22}O_{11}$ +	$O_2 \rightarrow$	CO ₂	+	H ₂ O
8. C ₆ H ₆ +	$O_2 \rightarrow$	CO_2	+	H ₂ O

Section №: 4 Stoichiometry

1. Reading a balanced equation in molecules and moles

18. How can you read the following equation in terms of molecules and moles? $2 C_{\rm e}H_{\rm e} + 7 \Omega_{\rm e} \rightarrow 4 C\Omega_{\rm e} + 6 H_{\rm e}\Omega_{\rm e}$

 $2 \operatorname{C}_2 \operatorname{H}_6 + 7 \operatorname{O}_2 \longrightarrow 4 \operatorname{CO}_2 + 6 \operatorname{H}_2 \operatorname{O}$

two molecule of $C_2H_6 + 7$ molecules of O_2 produce 4 molecules of CO_2 and 6 molecules of H_2O

- two mole of $C_2H_6 + 7$ mole of O_2 produce 4 mole of CO_2 and 6 mole of H_2O_2

19. Equations with whole-number coefficients are read only in molecules or mole

2. <u>Reading a balanced equation with fractional coefficients in moles</u> 20. How would you read the equation: $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(g)$ One molecule of H_2 + half molecules of O_2 produce one molecules of H_2O

21. Equations with fractional coefficients are read only in molecules

3. Use equations to get mass ratio of reactants and products

22. Give the ratio by mass of reactants and products in the following equation: $H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(g)$ [O = 16, H = 1] 2 g of H₂ + 16 of O₂ produce 16 g of H₂O

23. Give the ratio by mass of reactants and products in the following equation: $2 C_2H_6 + 7 O_2 \rightarrow 4 CO_2 + 6 H_2O$ [C =12, O = 16, H = 1] 60 g of C₂H₆ + 224 g of O₂ produce 176 of CO₂ and 108 of H₂O

10. Reaction ratios involving masses and moles

24. Consider the following reaction:

 $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$

What are the ratios of reactants and products in moles?

[-A-] 1 mole N₂ + 3 moles of H₂ \rightarrow 2 moles of NH₃

- $[-B-] \quad 1 \text{ mole } N_2 + 2 \text{ moles of } H_2 \rightarrow 3 \text{ moles of } NH_3$
- $[-C-] 2 \text{ mole } N_2 + 1 \text{ moles of } H_2 \rightarrow 2 \text{ moles of } NH_3$
- $[-D-] \quad 3 \text{ mole } N_2 + 2 \text{ moles of } H_2 \rightarrow 1 \text{ moles of } NH_3$
- $[-E-] \quad 4 \text{ mole } N_2 + 2 \text{ moles of } H_2 \rightarrow 1 \text{ moles of } NH_3$

25. Consider the following reaction:

 $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ [N =14, H = 1]

What are the ratios of reactants and products in grams?

- $[-A-] \quad 17g \text{ of } N_2 + 8g \text{ of } H_2 \rightarrow 34g \text{ of } NH_3$
- [-B-] 28g of N₂ + 6g of H₂ \rightarrow 34g of NH₃
- [-C-] 14g of N₂ + 2g of H₂ \rightarrow 17g of NH₃
- [-D-] 36g of N₂ + 1g of H₂ \rightarrow 37g of NH₃
- [-E-] 18g of $NH_3 + 2g$ of $H_2 \rightarrow 17g$ of NH_3

11. Apply conservation of mass to chemistry problems

26. Show that the mass is conserved in the following reaction: $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ [N =14, H = 1]

 $28g \text{ of } N_2 + 6g \text{ of } H_2 \rightarrow 34g \text{ of } NH_3$

12. Given mass of one reactant, find mass of other

27. Consider the following reaction:

 $2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(g)} + 496 \text{ kJ}$

How many grams of hydrogen gas (H₂) will be used if 6.4 g of O₂ are consumed? [H=1; O=16]

0.8 g

13. Given mass of one reactant, find moles of other

28. Consider the following reaction:

 $2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(g)} + 496 \text{ kJ}$

How many moles of hydrogen gas (H₂) will react with 12.8 g of O₂? [H=1; O=16]

0.8 g

29. Consider the following reaction:

 $2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(g)} + 496 \text{ kJ}$ How many moles of water (H₂O) are produced if 6.4 g of O₂ are consumed? [H=1; O=16]

0.4 mole

14. Given moles of one reactant, find moles of other

- **30**. Consider the following reaction:
 - $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ [N =14, H = 1]

How many moles of H₂ will be consumed if 0.5 mole of N₂ gas is used?

15. Given mass of one reactant, find mass of product

31. Consider the following reaction: $2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(g)} + 496 \text{ kJ}$ How many grams of H₂O are produced if 8g of H₂ are consumed? [H=1; O=16]

72 g

32. Consider the following reaction:

 $2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(g)} + 496 \text{ kJ}$ How many grams of hydrogen gas (H₂) are consumed if 3.6g of H₂O produced? [H=1; O=16]

0.4 g

4. Standard temperature and pressure (STP)

33. What does the Standard Temperature and Pressure (STP) refer to?

Standard temperature and pressure (T=0 C p=1 atm)

34. How do the molar volumes of gases, solids and liquids compare?

Gas > liquid > solid

5. <u>At STP 1 mole of gas occupies 22.4 dm³</u>
35. What is the molar volume of a gas at STP conditions?

 22.4 dm^3

6. Volume relations in balanced chemical equations

36. In the reaction below, at STP, what is the reacting ratio by Volume? $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$

8. Reaction ratios involving volumes at STP and masses

37. Consider the following reaction:

 $2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(g)} + 496 \text{ kJ}$

What is the volume of H_2 gas that can produce 32g of H_2O at STP? [H=1; O=16]

<u>39.8 dm³ </u>

9. Reaction ratios involving volumes at STP and moles

38. What volume of CO₂, in dm ³ at STP is produced if 3.5 moles of O₂ are consumed? $C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) + 2H_2O(l) + 800 \text{ kJ}$

52.2 dm³

16. Given moles of product. find STP volume of one reactant

39. Consider the following reaction:

 $2H_{2\,(g)} + O_{2\,(g)} \rightarrow 2H_2O_{(g)} + 496 \text{ kJ}$

What is the volume of H_2 gas that can produce 4.5 moles of H_2O at STP? [H=1; O=16]

 $100.8 \, \rm{dm}^3$

7. Writing an equation with the energy involved

40. Consider the equation: $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$ If we are to write the equation to include the information that the reaction is exothermic, evolving 284 kJ/mol H₂, what do we add, and to which side?

 $2H_2(g) + O_2(g) \rightarrow 2H_2O(g) + 284 \text{ kJ}$

41. Write the reaction that describes the following: Hydrogen gas (H_2) reacts with oxygen gas (O_2) to produce water (H_2O) and 224 KJ of energy.

 $2H_2(g) + O_2(g) \rightarrow 2H_2O(g) + 224 \text{ kJ}$

42. Write the reaction that describes the following:

One mole of solid carbon (C) reacts with one mole of oxygen gas (O_2) to produce one mole of carbon dioxide (CO_2) with an energy release of 420 KJ.

 $\mathbf{C}(s) + \mathbf{O}_2(g) \rightarrow \mathbf{CO}_2(g) + 420 \text{ kJ}$

17. Given quantity of one reactant find heat evolved

43. Calculate the amount of energy produced when 3.2g of O₂ reacts completely in the following reaction: $2H_2(g) + O_2(g) \rightarrow H_2O(g) + 224$ KJ [H=1, O = 16]

22.4 KJ

44. Consider the following reaction:

 $2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(g)} + 496 \text{ kJ}$ What is the amount of heat produced if 4 g of O₂ reacted? [H=1; O=16]

62 KJ

18. <u>Recognize limiting reagent*</u>

45. What is a limiting reagent?

The substance that consumed firstly

46. Consider the following reaction: $2H_2(g) + O_2(g) \rightarrow H_2O(g) + 224KJ$ [H=1, O = 16] If 32g of O₂ and 0.5 moles of H₂ are given initially, which reactant is the limiting reagent? [S = 32 and O = 16]

 H_2

47. Consider the following reaction: $4\text{Fe}(s) + 3\text{O}_2(g) \rightarrow 2\text{Fe}_2\text{O}_3(s)$ [Fe = 56, O = 16] Suppose that 0.56g of Fe(s) and 44.8 L of O₂(g) are given initially at STP. What is the limiting reagent?

1	F	ρ	
1	Ľ	U	

19. <u>One reactant is in excess, find moles of product*</u>

48. Consider the following reaction: $4\text{Fe}(s) + 3O_2(g) \rightarrow 2\text{Fe}_2O_3(s)$

[Fe = 56, O = 16]

- Suppose that 5.6g of Fe(s) and 44.8 L of $O_2(g)$ are given initially at STP. What is the limiting reagent?

Fe

- How many moles of Fe_2O_3 are produce

0.05 mole

Chapter 5: The Gas Phase

In all multiple choice questions, more than answer could be correct

Section No: 1 Molar Volumes of Gases

Concept №:

1. Know that the molar volume in the gaseous state is much larger

01. The volume occupied by one mole of *any* pure substance under *normal* temperature and pressure is generally the ______ (smallest/ largest) for gases and the ______ (smallest/ largest) for solids.

2. Know the meaning of the volume of a gas

02. The volume a certain gas is ______ (dependent/ independent) on its container.

3. Know how the molar volume of gases changes with molar mass

03. As the molar mass of a real gas increases, the molar volume will _____ (increase/ decrease).

4. Know how the molar volume of gases changes with atomicity

04. As the atomicity of a real gas increases, the molar volume will ______ (increase/ decrease).

5. Given mass and volume of gas at STP, find mass of 1 mole

05. 5.6 L of a gas at STP have a mass of 8.0 g. What is the mass of one mole of this gas? [*Given that 1 mole of any gas has a volume of 22.4 L at STP conditions*]

32 g

06. 50 dm³ of a gas at STP have a mass of 9.0g. The mass of one mole of this gas is ______. [Given that 1 mole of any gas has a volume of 22.4 L at STP conditions]

4.<u>032 g</u>

6. Know how PxV varies with increasing temperature for a real gas

07. What will happen when the pressure of a real gas increases at a constant temperature?

The molar volume decrease

08. As temperature increases, how P x V varies? <u>increase</u>

7. Know how PxV varies with changing pressure for a real gas

09. As the pressure of the gas increases, ______. What is the missing phrase?

[-A-] the volume decreases until a point where the gas becomes a liquid and P.V= constant can't be applied anymore.

- [-B-] the volume increases until a point where the gas becomes a solid.
- [-C-] the temperature decreases and the gas becomes a liquid.
- [-D-] the volume will not change.

Section №: 2 The Kinetic Theory of Gases
Concept №:
1. <u>Kinetic theory of gases</u>
10. What is the kinetic theory of gases?

A model of randomly moving particles colliding with the container to exert pressure

2. Know why at a higher temperature a gas exerts a higher pressure

11. According to the kinetic energy, why does a gas exerts a higher pressure at a higher temperature?

The molecules move faster and colloids faster exerting high pressure

3. Know that at a higher temperature gas molecules move more rapidly

12. How do molecules move at a higher temperature? <u>faster</u>

4. Know that at the same temperature different gases have the same molecular KE

13. If two gases are present at the same temperature, then they have the same average <u>Kinetic energy</u>.

14. Which of the following gases oxygen (O_2) or hydrogen (H_2) moves faster if they are present at the same conditions of temperature and pressure? [H = 1 and O = 16]

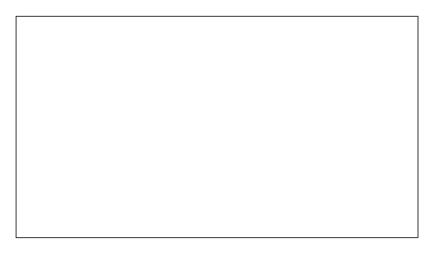
<u>H₂</u>

5. Know effect of temperature on volume of gas at constant P

15. What is the effect of temperature on volume at constant pressure?

As T increase, the volume increase.

16. At a constant pressure, the graph of the *Volume* of a fixed mass of gas vs. *Temperature* in °C is ______ (a curve passing through the origin/ a curve not passing through the origin/ a straight line not passing through the origin/ a straight line passing through the origin).


6. Know what is meant by an ideal gas

17. What is an ideal gas?

A gas that does not liquefy and whose molecules have zero volume

7. Know that the absolute zero is 0K which is -273°C

18. What is the graph plotted of *Volume vs Temperature*?

19. 'At constant pressure, the volume V of a fixed amount of gas is *directly proportional* to ______ (Temp in °C/ Temp in K).

20. What is zero Kelvin?

21. The temperature of -273 °C is called Absolute zero

8. Know the magnitude of Kelvin

22. What is the magnitude (size) of the Kelvin as compared to a $^{\circ}C$? [-A-] The size of the Kelvin is the same size as the Celsius degree: $1K = 1^{\circ}C$ [-B-] The size of the Kelvin is the same as $-273 \,^{\circ}C$ [-C-] The size of the Kelvin is the same size as Fahernheit degree

9. Changing Celsius to Kelvin and vice-versa

23. What is the relation between $^{\circ}$ C (degree Celsius) and K (Kelvin)? K = C+273

24. 230K is how much in °C? <u>-43 C</u>

25. The temperature 27°C is how much in Kelvin? 300 K

10. Volume of a gas is directly proportional to the absolute temperature

26. What is the relation between volume and temperature at a constant pressure?

Directly proportional

11. Relation between FP and BP of a gaseous substance and its molar mass*

27. How do the boiling points and freezing points in degrees Celsius of certain substances that are gaseous at room temperature change with increasing molar mass?

[-A-] In general, the higher the molar mass the higher is the FP and BP.

[-B-] In general, the higher the molar mass the lower is the FP and BP.

[-C-] In general, the freezing points and boiling points are directly proportional to the molar mass.

12. The barometer is used to measure atmospheric pressure

28. What is the instrument is used to measure the atmospheric pressure? Barometer

13. Kn ow what the unit 'At mosp here' means

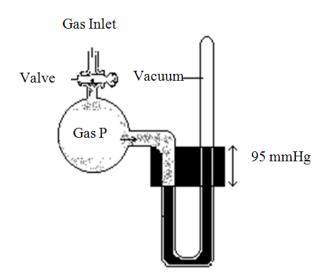
29. What is *atmosphere*?

The pressure that can support a column of mercury 760 mm high at 0 C

14. Know when and how to use the closed-end manometer

30. What does a closed-end manometer measure?

The pressure of gas in acontainer


- 31. In a closed-end manometer:-
- [-A-] the level of mercury in the closed end arm is always lower than that of the other arm
- [-B-] measuring the pressure of a gas depends on the atmospheric pressure
- [-C-] measuring the pressure of a gas does not depend on the atmospheric pressure

[-D-] the level of mercury in the closed end arm is always equal to that of the other arm

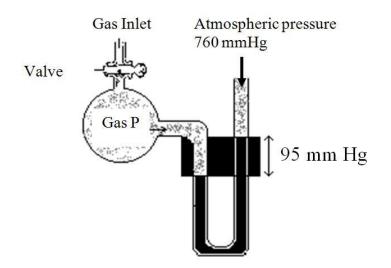
15. Determine the pressure in a flask using a closed-end manometer

32. What is the pressure of the gas in the following closed-end manometer? Given: atmospheric pressure = 760 mm Hg.

95 mm Hg

16. Know when and how to use the open-end manometer

33. What does an open-end manometer measure?


Differences between the atmospheric pressure and pressure of column

34. In an open-end manometer:-

- [-A-] the level of mercury in the open end arm is always lower than that of the other arm
- [-B-] measuring the pressure of a gas depends on the atmospheric pressure
- [-C-] measuring the pressure of a gas does not depend on the atmospheric pressure
- [-D-] the level of mercury in the closed end arm is always equal to that of the other arm

17. Determine the pressure in a flask using an open-end manometer

35. What is the pressure of the gas in the following open-end manometer? Given: atmospheric pressure = 760 mm Hg. **855 mm Hg**

18. Know the meaning of partial pressure of a gas in a mixture of gases*

36. In a mixture of two gases A and B, the partial pressure of a gas means:

[-A-] The partial pressure is the pressure that the gas would exert on the atoms in the container

[-B-] The partial pressure is the pressure that the gas would exert if it were alone in the container

[-C-] The partial pressure is the pressure that the gas would exert between the molecules in the container

[-D-] The partial pressure is the pressure that gas A exert on gas B [-E-] None of the above

37. The pressure exerted by each of the gases in a gas mixture is called (partial

pressure/ total pressure).

38. Define partial pressure.

The pressure exerted by each of the gases in a gas mixture

19. Determine total pressure of a gas in a mixture of gases*

39. When 0.3 mole of gas *A*, are put in a totally empty flask *X*, it exerts a pressure of 12 mm Hg. When 2.4 moles of gas *B* are put in the same totally empty flask *X*, it exerts a pressure of 96 mm Hg. Both quantities (of *A* and *B*) are now placed in an identical empty flask *Y*. Which of the following is *TRUE* about flask *Y*? The total pressure is =

- [-A-] 96 mmHg
- [-B-] 12 mmHg
- [-C-] 84mmHg
- [-D-] 108 mmHg
- [-E-] 2.7 mmmHg

20. Know that the partial pressure ratio of gases equals their moles ratio*

40. When 0.3 mole of gas A, are put in a totally empty flask X, it exerts a pressure of 12 mm Hg. When 2.4 moles of gas B are put in the same totally empty flask X, it exerts a pressure of 96 mm Hg. Both quantities (of A and B) are now placed in an identical empty flask Y. Which of the following is *TRUE* about flask Y?

- [-A-] Mole fraction of gas A = (108/12).
- [-B-] Mole fraction of gas A = (0.3/2.7).
- [-C-] Mole fraction of gas A = (12/96).
- [-D-] Mole fraction of gas A = (2.4/2.7).
- [-E-] Mole fraction of gas A = (108/96).

41. Choose the correct answer:

During applying the equation of state PV=nRT

- [-A-] The mole ratio is equal to the temperature ratio.
- [-B-] The mole ratio is equal to the universal constant R
- [-C-] The partial pressure ratio is equals to mole ratio
- [-D-] The pressure is inversely proportional to the temperature
- [-E-] None of the above

42. A cylinder is filled with a mixture of O_2 and CO_2 . The total pressure was 6 atm, and the pressure of O_2 was 2 atm. What was the mole fraction of CO_2 ?

4<u>atm</u>

21. Mole fraction of gas A = ratio of partial pressure of A to total pressure*

43. Which of the following is *TRUE* about the mole fraction of gas A?

[-A-] Mole fraction of gas A is equal to the number of moles of gas A to the total volume

[-B-] Mole fraction of A is equal to the number of moles of gas A to the total pressure

[-C-] Mole fraction of gas A is equal to the number of moles of gas A to the number of moles of gas B

[-D-] Mole fraction of gas A is equal to the pressure of gas A to the total pressure

44. Define mole fraction

Mole fraction of gas A is equal to the pressure of gas A to the total pressure

45. 0.2 mole of oxygen gas (O_2) and 0.8 mole of nitrogen gas (N_2) are placed in an empty container of volume 24L. The total pressure in the container is 1 atm.

a. What is the total number of moles of gas in the container?

1mole

b. What is the mole fraction of $O_2(g)$ in the container?

0.2

c. What is the mole fraction of $N_2(g)$ in the container?

0.8

d. Find the partial pressure of $O_2(g)$

0.2 atm

e. Find the partial pressure of $N_2(g)$

0.8 atm

f. What is the volume of $O_2(g)$

24 L

46. The sample of air was found to contain 0.64g of oxygen and 2.24g of nitrogen. The pressure of the sample was 760 mm of Hg [O=16, N=14]. Find the: **a.** The total number of moles of gas in the sample.

0.1 mole

b. Mole fraction of oxygen in the sample.

0.2

c. Partial pressure of each oxygen and nitrogen in the sample.

0.2 atm , 0.8 atm

d. The percentage composition of air.

O: 22.2 % , N:77.8 %

Section No: 3 The Ideal Gas

Concept №:

1. Assumptions of the kinetic theory for an ideal gas*

47. The only form of energy of a particle of an ideal gas can carry is kinetic energy

2. <u>How a real gas differs in behaviour from an ideal gas*</u>

48. Answer by TRUE or FALSE. Correct the FALSE ones.

[-A-] The only form of energy a particle of an ideal gas can carry is <u>potential</u>. F

[-B-] Between collisions, particles of a gas move in <u>parallel lines</u>. F

[-C-] Ideal gases liquefy at high pressures and low temperature. **F**

3. Know the pressure-temperature behaviour for an ideal gas

49. The pressure of an ideal gas is:

[-A-] inversely proportional to the temperature

[-B-] directly proportional to the temperature

- [-C-] directly proportional to the volume
- [-D-] equal to atmospheric pressure

50. The **P** and absolute **T** for an ideal gas are

related such that $P \propto T$.

51. The pressure of a fixed mass of an ideal gas in a container of a fixed volume:

- [-A-] decrease as the temperature decrease
- [-B-] increase as the temperature decrease
- [-C-] decrease as the temperature increase
- [-D-] inversely proportional to the temperature
- [-E-] None of the above

52. A cylinder fitted with a piston has 40 dm³ of a gas at 298°C. How can you increase the pressure by 4 times if you vary only the temperature?

Increase T by 4 times

53. A cylinder fitted with a piston has 50 dm³ of a gas at 300° C. How can you increase the pressure by 3 times if you vary only the volume?

Decrease V by 3 times

5. Know the pressure-volume behaviour of an ideal gas

54. The volume, V, of an ideal gas is:

[-A-] Directly proportional to the pressure

- [-B-] Inversely proportional to the temperature
- [-C-] Inversely proportional to the pressure
- [-D-] Inversely proportional to the number of moles
- [-E-] Directly proportional to the pressure

55. For an ideal gas, how are the pressure and volume related? <u>Inversely proportional</u>

6. Know the pressure-moles behaviour of an ideal gas

56. The pressure of an ideal gas is always:

- [-A-] Directly proportional to the number of moles
- [-B-] Inversely proportional to the volume
- [-C-] Inversely proportional to the number of moles
- [-D-] Inversely proportional to the temperature

7. Derive the equation of state of an ideal gas

57. Which one of the following relations is *NOT TRUE* about the equation of state of an ideal gas?

 $[-A-] \quad P \propto T$

- $[-B-] \quad P \propto V$
- $[-C-] \quad P \propto n$
- [-D-] $P \propto 1/V$

8. Recognizing the equation of state of an ideal gas

58. The equation of state of an ideal gas is:

- [-A-] PV=nR/T
- [-B-] PV=nT/R
- [-C-] nPV=RT
- [-D-] PV=nRT
- [-E-] P=VRT/n

59. How many moles of an ideal gas occupy a volume of 44.8 dm³ at a pressure of 0.5 atm and a temperature of 273K? Use R = 0.082 atm.dm³.mol⁻¹.K⁻¹

1 mole

60. 3.2g of a gas occupy a volume of 9.4 L, at 27° Cand 380 mm Hg. Find the molar mass of the gas. Use R = 0.082 atm.dm³.mol⁻¹.K⁻¹

16.8 g/mole

61. Calculate the molar volume of an ideal gas at room temperature 25° C and pressure 1 atm. Use R = 0.082 atm.dm³.mol⁻¹.K⁻¹

24.436 L

62. What is the mass of oxygen gas $O_2(g)$ if it occupies a volume of 500 mL at 28°C and a pressure of 0.8 atm. [O=16] Use R = 0.082 atm.dm³.mol⁻¹.K⁻¹

0.518 g

63. If an ideal gas occupies a volume of 500 mL at 2 atm, what will be the new volume at a pressure of 790 mm Hg and at constant temperature? (1 atm= 760 mmHg)

0.96 L

64. If an ideal gas occupies a volume of 500 mL at 1.5 atm and 28° C, what will be the new pressure if the temperature is increased to 55° C at a volume of 2L? (1 atm= 760 mmHg)

0.41 atm

9. Calculating the value of the universal gas constant

65. Knowing that one mole of a gas occupies 22.4 L at 0°C and 1 atm, what is the value and unit of the universal gas constant, R?

 $0.082 \text{ atm.dm}^3 \text{.mol}^{-1} \text{.K}^{-1}$

Section No: 4 Effusion of Gases

Concept №:

1. Know the meaning of effusion

67. What does effusion means?

2. Know that lighter molecules effuse faster such that $MV^2 = constant$

68. Which product was observed to be constant in the experiment of effusion?

$MV^2 = constant$

3. <u>Effusion experiment shows that average molecular KE = k at constant temperature</u>

69. Which generalizations can be made from the effusion experiment?

Effusion experiment shows that average molecular KE = k at constant temperature

5. Know how to find the pressure of H₂ (g) collected over water*

70. Suppose you have collected 300cm³ of oxygen gas $O_{2 (g)}$ over water at 25°C. The atmospheric pressure is 0.9 atm, and the vapour pressure is 0.0031 atm at 25°C. a) What is the partial pressure of oxygen gas?

b) How many grams of oxygen have you collected? Use R = 0.082 atm.dm³.mol⁻¹.K⁻¹